槲皮素对药物转运体调控作用的研究进展

杨婷玉, 刘亚妮, 师少军

中国药学杂志 ›› 2017, Vol. 52 ›› Issue (9) : 721-725.

PDF(1136 KB)
PDF(1136 KB)
中国药学杂志 ›› 2017, Vol. 52 ›› Issue (9) : 721-725. DOI: 10.11669/cpj.2017.09.002
综述

槲皮素对药物转运体调控作用的研究进展

  • 杨婷玉, 刘亚妮, 师少军*
作者信息 +

Advances in the Modulation of Quercetin on Drug Transporters

  • YANG Ting-yu, LIU Ya-ni, SHI Shao-jun*
Author information +
文章历史 +

摘要

槲皮素通过对摄取转运体有机阴离子转运多肽 (organic anion transporter polypeptides,OATPs) 、有机阴离子转运体 (organic anion transporters,OATs)和外排转运体P-糖蛋白(P-glycoprotein,P-gp)、多药耐药相关蛋白(multidrug resistance-related protein,MRP)和乳腺癌耐药蛋白(breast cancer resistance protein,BCRP)等的调控作用,从而影响多种常用药物在体内、体外的代谢。槲皮素可调控多种药物转运体,从而影响其他药物的体内过程。

Abstract

Quercetin could affect both the in vivo and in vitro transport of a variety of commonly used drugs by modulating the uptake transporter organic anion transporter polypeptides (OATPs), organic anion transporters (OATs), efflux transporter P-glycoprotein (P-gp), multidrug resistance-related protein (MRP) and breast cancer resistance protein (BCRP), respectively. Quercetin can regulate various drug transporters, thereby affecting other drugs in vivo process.

关键词

槲皮素 / 药物转运体 / 调控作用 / 体外 / 体内

Key words

quercetin / drug transporters / modulation / in vitro / in vivo

引用本文

导出引用
杨婷玉, 刘亚妮, 师少军. 槲皮素对药物转运体调控作用的研究进展[J]. 中国药学杂志, 2017, 52(9): 721-725 https://doi.org/10.11669/cpj.2017.09.002
YANG Ting-yu, LIU Ya-ni, SHI Shao-jun. Advances in the Modulation of Quercetin on Drug Transporters[J]. Chinese Pharmaceutical Journal, 2017, 52(9): 721-725 https://doi.org/10.11669/cpj.2017.09.002
中图分类号: R965   

参考文献

[1] ZHANG Z Q, ZHU S X. Research progress on pharm acological activities and clinical application of quercetin[J]. J Pharm Res, 2013, 32(7):400-403.
[2] ZHU R, MA Y M. Progress in drug transporters in hepatocytes[J]. Chin J Pharmacol Toxicol(中国药理学与毒理学杂志), 2014, 28(5):806-812.
[3] MANDERY K, BALK B, BUJOK K, et al. Inhibition of hepatic uptake transporters by flavonoids[J]. Eur J Pharm Sci, 2012, 46(1-2):79-85.
[4] WEN F, SHI M, BIAN J, et al. Identification of natural products as modulators of OATP2B1 using LC-MS/MS to quantify OATP-mediated uptake[J]. Pharm Biol, 2016, 54(2):293-302.
[5] MANDERY K, BUJOK K, SCHMIDT I, et al. Influence of the flavonoids apigenin, kaempferol, and quercetin on the function of organic anion transporting polypeptides 1A2 and 2B1[J]. Biochem Pharmacol, 2010, 80(11):1746-1753.
[6] GLAESER H, BUJOK K, SCHMIDT I, et al. Organic anion transporting polypeptides and organic cation transporter 1 contribute to the cellular uptake of the flavonoid quercetin[J]. Naunyn Schmiedebergs Arch Pharmacol, 2014, 387(9):883-891.
[7] AN G, WANG X, MORRIS M E. Flavonoids are inhibitors of human organic anion transporter 1 (OAT1)-mediated transport[J]. Drug Metab Dispos, 2014, 42(9):1357-1366.
[8] WANG M, QI H, LI J, et al. Transmembrane transport of steviol glucuronide and its potential interaction with selected drugs and natural compounds[J]. Food Chem Toxicol, 2015, 86:217-224.
[9] OFER M, WOLFFRAM S, KOGGEL A, et al. Modulation of drug transport by selected flavonoids:involvement of P-gp and OCT?[J]. Eur J Pharm Sci, 2005, 25(2-3):263-271.
[10] HSIU S L, HOU Y C, WANG Y H, et al. Quercetin significantly decreased cyclosporin oral bioavailability in pigs and rats[J]. Life Sci, 2002, 72(3):227-235.
[11] MITSUNAGA Y, TAKANAGA H, MATSUO H, et al. Effect of bioflavonoids on vincristine transport across blood-brain barrier[J]. Eur J Pharmacol, 2000, 395(3):193-201.
[12] YUAN Z, WANG H, HU Z, et al. Quercetin inhibits proliferation and drug resistance in KB/VCR oral cancer cells and enhances its sensitivity to vincristine[J]. Nutr Cancer, 2015, 67(1):126-136.
[13] NGUYEN H, ZHANG S, MORRIS M E. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells[J]. J Pharm Sci, 2003, 92(2):250-257.
[14] KIDRON H, WISSEL G, MANEVSKI N, et al. Impact of probe compound in MRP2 vesicular transport assays[J]. Eur J Pharm Sci, 2012, 46(1-2):100-105.
[15] NAIT C M, AL A A, PELUSO J, et al. Quercetin and naringenin transport across human intestinal Caco-2 cells[J]. J Pharm Pharmacol, 2009, 61(11):1473-1483.
[16] WU C P, CALCAGNO A M, HLADKY S B, et al. Modulatory effects of plant phenols on human multidrug-resistance proteins 1, 4 and 5 (ABCC1, 4 and 5)[J]. FEBS J, 2005, 272(18):4725-4740.
[17] YU C Z, QI X M, REN J. BCRP-targeted reverse of multidrug resistance:research progress and drug development[J]. Chin Pharmacol Bull(中国药理学通报), 2014, 30(5):615-618.
[18] KIMURA O, FUJII Y, HARAGUCHI K, et al. Effect of quercetin on the uptake and efflux of aristolochic acid I from Caco-2 cell monolayers[J]. J Pharm Pharmacol, 2016, 68(7):883-889.
[19] FLEISHER B, UNUM J, SHAO J, et al. Ingredients in fruit juices interact with dasatinib through inhibition of BCRP:a new mechanism of beverage-drug interaction[J]. J Pharm Sci, 2015, 104(1):266-275.
[20] LUAN J J, SONG J G. Drug transporter and the disposition of drug in the body[J]. Anhui Med Pharm J(安徽医学), 2005, 9(10):721-723.
[21] WU L X, GUO C X, CHEN W Q, et al. Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin:an in vitro and in vivo assessment[J]. Br J Clin Pharmacol, 2012, 73(5):750-757.
[22] IDE T, SASAKI T, MAEDA K, et al. Quantitative population pharmacokinetic analysis of pravastatin using an enterohepatic circulation modelcombined with pharmacogenomic Information on SLCO1B1 and ABCC2 polymorphisms[J]. J Clin Pharmacol, 2009, 49(11):1309-1317.
[23] CHOI J S, PIAO Y J, KANG K W. Effects of quercetin on the bioavailability of doxorubicin in rats:role of CYP3A4 and P-gp inhibition by quercetin[J]. Arch Pharm Res, 2011, 34(4):607-613.
[24] PINGILI R B, PAWAR A K, CHALLA S R. Systemic exposure of paracetamol (acetaminophen) was enhanced by quercetin and chrysin co-administration in Wistar rats and in vitro model:risk of liver toxicity[J]. Drug Dev Ind Pharm, 2015, 41(11):1793-1800.
[25] BABU P R, BABU K N, PETER P L, et al. Influence of quercetin on the pharmacokinetics of ranolazine in rats and in vitro models[J]. Drug Dev Ind Pharm, 2013, 39(6):873-879.
[26] LI X, CHOI J S. Effects of quercetin on the pharmacokinetics of etoposide after oral or intravenous administration of etoposide in rats[J]. Anticancer Res, 2009, 29(4):1411-1415.
[27] LIU Y, LUO X, YANG C, et al. Impact of quercetin induced changes in drug metabolizing enzyme and transporter expression on the pharmacokinetics of cyclosporine in rats[J]. Mol Med Rep, 2016, 14(4):3073-3085.
[28] LIU Z H, LI Y. Modulation of nuclear receptors on drug-metabolizing enzymes and transporters[J]. Acta Pharm Sin(药学学报), 2012, 47 (12):1575-1581.
[29] CHEN Y, TANG Y, GUO C, et al. Nuclear receptors in the multidrug resistance through the regulation of drug-metabolizing enzymes and drug transporters[J]. Biochem Pharmacol, 2012, 83(8):1112-1126.
[30] TOLSON A H, WANG H. Regulation of drug-metabolizing enzymes by xenobiotic receptors:PXR and CAR[J]. Adv Drug Deliv Rev, 2010, 62(13):1238-1249.
[31] SYNOLD T W, DUSSAULT I, FORMAN B M. The orphan nuclear receptor SXR coordinately regulates drug metabolism and efflux[J]. Nat Med, 2001, 7(5):584-590.
[32] GEICK A, EICHELBAUM M, BURK O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin[J]. J Biol Chem, 2001, 276(18):14581-14587.
[33] KAST H R, GOODWIN B, TARR P T, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor[J]. J Biol Chem, 2002, 277(4):2908-2915.
[34] GUI C, MIAO Y, THOMPSON L, et al. Effect of pregnane X receptor ligands on transport mediated by human OATP1B1 and OATP1B3[J]. Eur J Pharmacol, 2008, 584(1):57-65.
[35] SAEKI M, KUROSE K, HASEGAWA R, et al. Functional analysis of genetic variations in the 5'-flanking region of the human MDR1 gene[J]. Mol Genet Metab, 2011, 102(1):91-98.
[36] BURK O, ARNOLD K A, GEICK A, et al. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression[J]. Biol Chem, 2005, 386(6):503-513.
[37] YE N, WANG H, HONG J, et al. PXR Mediated protection against liver inflammation by ginkgolide A in tetrachloromethane treated mice[J]. Biomol Ther (Seoul), 2016, 24(1):40-48.
[38] RIGALLI J P, CIRIACI N, ARIAS A, et al. Regulation of multidrug resistance proteins by genistein in a hepatocarcinoma cell line:impact on sorafenib cytotoxicity[J]. PLoS One, 2015, 10(3):e119502.
[39] HIURA Y, SATSU H, HAMADA M, et al. Analysis of flavonoids regulating the expression of UGT1A1 via xenobiotic receptors in intestinal epithelial cells[J]. Biofactors, 2014, 40(3):336-345.
[40] LAU A J, CHANG T K. 3-Hydroxyflavone and structural analogues differentially activate pregnane X receptor:implication for inflammatory bowel disease[J]. Pharmacol Res, 2015, 100:64-72.
[41] LAU A J, CHANG T K. Indirect activation of the SV23 and SV24 splice variants of human constitutive androstane receptor:analysis with 3-hydroxyflavone and its analogues[J]. Br J Pharmacol, 2013, 170(2):403-414.
[42] LI L, STANTON J D, TOLSON A H, et al. Bioactive terpenoids and flavonoids from Ginkgo biloba extract induce the expression of hepatic drug-metabolizing enzymes through pregnane X receptor, constitutive androstane receptor, and aryl hydrocarbon receptor-mediated pathways[J]. Pharm Res, 2009, 26(4):872-882.

基金

国家自然科学基金面上项目(81273591,81503161);中央高校基本科研业务费专项资金(2014YGYL003)
PDF(1136 KB)

Accesses

Citation

Detail

段落导航
相关文章

/